Information and Communication Technology to Promote Safety and Independence
Leighanne Davis, BS1, Kevin Caves, ME, ATP, RET1, 2, 3
Duke University
1Department of Surgery; Division of Head and Neck Surgery & Communication Sciences 2Department of Medicine 3Department of Biomedical Engineering

Mission and Purpose
• To promote information and communication technology (ICT) access for all people regardless of ability
• To promote awareness of the need for equitable access to developers
• To develop/validation ICT applications to improve the capacity for independent living and community participation
• The following are examples of current ICT development projects at Duke University

Alexa Stress Assist
• Military service members with traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD) are taught various grounding evidenced based strategies as an intervention to post-traumatic stress (PTS)
• Grounding: strategies designed to immediately connect a person with the present moment to avoid re-experiencing past trauma and pain. Often designed to redirect focus to environmental features, i.e. sound, lighting, smells, temp.
• ASA is a proof of concept system designed around the Amazon Echo and the Samsung SmartThings platform
• A custom SmartThings SmartApp enables user customization and control
• Next Steps: Developing back-end interface for customization of interactions. Beta testing at the Shepherd Center SHARE Military Initiative in Atlanta, GA
• The system provides grounding by:
 • Changing environmental controls (lights, music, temperature, scents)
 • Playing personalized recordings (e.g. recording of cherished family member)
 • Prompting user to initiate breathing exercises or other evidence based grounding techniques
 • Contacting family member or provider by phone, email or text
 • Data logging and analysis

One-Thing-Straight (1TS)
• Individuals with Parkinson’s Disease (PD) can lose postural awareness resulting in a forward flexed posture while sitting and standing.
• Can lead to dangerous conditions such as falls
• Many people with PD can correct their posture with cueing.
• 1TS is an iOS application + microcontroller based sensor to track postural movements
 • Sensor tracks flexed posture via accelerometer worn on the user’s collar
 • Postural data is sent via Bluetooth to the user’s phone and user is notified by discrete tone or vibration to correct their posture
• Next Steps: Clinical testing and app finalization
• Developed in collaboration with the Duke Institute for Health Innovation – Mike Revoir and Jack Livingston: Rapid Health App Prototyping Center

Gait Speed Monitor
• Walking (gait) speed is a strong predictor of functional status & survival amongst older adults
• Current measurement method requires either expensive equipment or a trained technician and is prone to error between timers and trials
• The Gait Speed Monitor is a low cost alternative to current methods
 • Utilizes LIDAR sensor technology to measure and calculate walking speed
 • Recent verification and validation testing with a cohort of healthy elders show 96% correlation with trained timers and 99% with more expensive timer systems

Safe@Night
• People with cognitive/judgement disorders who may wander throughout the house or outside during the night
• Created a system of sensors that communicate via a microcontroller:
 • Microcontroller mediates web data-logging
 • Client identification and tracking via 802.15.4 (low data rate WPAN) protocol
 • Room movement tracking via passive infrared (PIR) sensors
 • System will play audible reminder via hallway and room speakers after ‘x’ minutes of continued wandering
 • Persistent wandering or entrance into dangerous areas will immediately notify a caretaker via text message or audible alert
• Current Status: 1st prototype, including web data logging, Client ID and tracking, and room movement sensors are set up and functioning
• Next Steps: Improve hardware selections for power and cost performance

The Rehabilitation Engineering Research Center for Information and Communication Technology Access (LiveWell RERC) is funded by a 5-year grant from the National Institute on Disability, Independent Living and Rehabilitation Research in the U.S. Department of Health and Human Services (grant number 90RE5023). The opinions are those of the LiveWell RERC and do not necessarily reflect those of the U.S. Department of Health and Human Services or NIDILRR.

For More information or if you have project ideas, contact: leighanne.davis@duke.edu or kevin.caves@duke.edu